On the first Zagreb index and multiplicative Zagreb coindices of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zagreb, multiplicative Zagreb Indices and Coindices of ‎graphs

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

متن کامل

zagreb, multiplicative zagreb indices and coindices of ‎graphs

‎let g=(v,e) be a simple connected graph with vertex set v and edge set e. the first, second and third zagreb indices of g are respectivly defined by: $m_1(g)=sum_{uin v} d(u)^2, hspace {.1 cm} m_2(g)=sum_{uvin e} d(u).d(v)$ and $ m_3(g)=sum_{uvin e}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in g and uv is an edge of g connecting the vertices u and v. recently, the first and second m...

متن کامل

Multiplicative Zagreb Indices and Coindices of Some Derived Graphs

In this note, we obtain the expressions for multiplicative Zagreb indices and coindices of derived graphs such as a line graph, subdivision graph, vertex-semitotal graph, edge-semitotal graph, total graph and paraline graph.

متن کامل

More on Zagreb Coindices of Composite Graphs

For a nontrivial graph G, its first and second Zagreb coindices are defined [1], respectively, as M1(G) = ∑ uv ∈E(G) (dG(u)+dG(v)) and M2(G) = ∑ uv ∈E(G) dG(u)dG(v), where dG(x) is the degree of vertex x in G. In this paper, we obtained some new properties of Zagreb coindices. We mainly give explicit formulae for the first Zagreb coindex of line graphs and total graphs. Mathematics Subject Clas...

متن کامل

Multiplicative Versions of First Zagreb Index

The first Zagreb index of a graph G, with vertex set V (G) and edge set E(G), is defined as M1(G) = ∑ u∈V (G) d(u) 2 where d(u) denotes the degree of the vertex v. An alternative expression for M1(G) is ∑ uv∈E(G)[d(u) + d(v)]. We consider a multiplicative version of M1 defined as Π∗1(G) = ∏ uv∈E(G)[d(u) + d(v)]. We prove that among all connected graphs with a given number of vertices, the path ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2016

ISSN: 1844-0835

DOI: 10.1515/auom-2016-0008